Android Malware Detection Based on Feature Selection and Weight Measurement

نویسندگان

چکیده

With the rapid development of Android devices, is currently one most popular mobile operating systems. However, it also believed to be an entry point many attack vectors. The existing malware detection method does not fare well when dealing with complex and intelligent applications, especially those based on feature systems which have become increasingly elusive. Therefore, we propose a novel selection algorithm called frequency differential (FDS) weight measurement for detection. purpose solve shortcomings algorithms in filter out other effective features. Weight used optimize accuracy classifier improve We combine optimized features model verification evaluation. Experiments were conducted OmniDroid dataset, large comprehensive dataset extracted from 22,000 real benign samples. Theoretical analysis experimental results showed that FDS are effective, feasible, exhibit advantages over models. In detecting samples, proposed can achieve 99% F1-score 98%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Permission-Based Android Malware Detection

Mobile devices have become popular in our lives since they offer almost the same functionality as personal computers. Among them, Android-based mobile devices had appeared lately and, they were now an ideal target for attackers. Android-based smartphone users can get free applications from Android Application Market. But, these applications were not certified by legitimate organizations and the...

متن کامل

Android Malware Detection Based on System Calls

With Android being the most widespread mobile platform, protecting it against malicious applications is essential. Android users typically install applications from large remote repositories, which provides ample opportunities for malicious newcomers. In this paper, we propose a simple, and yet highly effective technique for detecting malicious Android applications on a repository level. Our te...

متن کامل

Permission based Malware Analysis & Detection in Android

Android being a leading and the most popular operating system for smart phones and tablets, has also become a prime target for the attackers due to its growing users and it being an open source platform. This document describes the work done in detecting malware in the Android platform by performing static analysis on the permission based framework in Android platform. In our work, we have extr...

متن کامل

Permission-based Malware Detection Mechanisms on Android: Analysis and Perspectives

Android security has been built upon a permission-based mechanism which restricts accesses of third-party Android applications to critical resources on an Android device. The user must accept the set of permissions an application requires, before proceeding the installation. This process aims to inform the users of the risk of installing and using an application on their device; but most often,...

متن کامل

DroidMat: Android Malware Detection

Recently, the threat of Android malware is spreading rapidly, especially those repackaged Android malware. Although understanding Android malware using dynamic analysis can provide a comprehensive view, it is still subjected to high cost in environment deployment and manual efforts in investigation. In this study, we propose a static feature-based mechanism to provide a static analyst paradigm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Intelligent Automation and Soft Computing

سال: 2022

ISSN: ['2326-005X', '1079-8587']

DOI: https://doi.org/10.32604/iasc.2022.023874